Stromunfall

Als Stromunfall, Elektrounfall oder auch Elektrischer Schlag wird eine Verletzung durch die Einwirkung von elektrischem Strom auf den Menschen oder auf Tiere bezeichnet.

Das Ausmaß der Schädigung wird dabei durch mehrere Faktoren bestimmt. Es treten Nervenschädigungen, chemische Veränderungen, thermische Schäden und Folgeschäden (zum Beispiel Knochenbrüche) auf.

Neben der Höhe der elektrischen Spannung, der Stromdichte und der Stromstärke spielt dabei eine Rolle, ob es sich um Wechselstrom oder Gleichstrom handelt und wie lange und über welchen Weg die Person (bzw. das Tier) vom elektrischen Strom durchflossen wird. Weiterhin ist die Hautbeschaffenheit an der Kontaktfläche von entscheidendem Einfluss, da beispielsweise eine schwielige und trockene Haut dem Stromfluss einen wesentlich höheren Widerstand als eine dünne und feuchte Haut entgegensetzt.

Stromart und Stromstärke

An der Skelettmuskulatur werden durch niederfrequenten Wechselstrom schon ab einer Stärke von 10 mA (sog. Loslassschwelle Gefährlichkeitsbereich AC3 beginnt) Kontraktionen ausgelöst, die aufgrund der stärkeren Ausbildung der Beugemuskeln (Flexoren) gegenüber den Streckmuskeln zu einem „Festhalten“ an der Stromquelle und damit zu einer längeren Einwirkzeit führen können. Ab 30-50 mA kann im Bereich des Brustkorbs eine Kontraktur, das heißt Anspannung der Atemmuskulatur und des Zwerchfells auftreten und damit ein Atemstillstand für die Dauer des Stromflusses. Dieser kann auch erfolgen, wenn der Stromfluss das Atemzentrum im Hirnstamm in Mitleidenschaft zieht.

Niederfrequenter Wechselstrom kann schon bei einer Stromstärke von 50 mA zum Tode durch Kammerflimmern führen, da bei der in Deutschland und anderen europäischen Staaten üblichen Frequenz von 50 Hz Wechselstrom 100 mal pro Sekunde auf die empfindliche Phase des Herzmuskels eingewirkt wird. Die Verdopplung ergibt sich durch den Umstand, dass sowohl die positive als auch negative Halbwelle des Wechselstromes biologisch wirkt.

Bei Unfällen mit Gleichstrom können demgegenüber noch Stromstärken von 300 mA überlebt werden.

Der konkrete Wert des den Körper durchfließenden elektrischen Stromes ergibt sich aus dem elektrischen Widerstand, den der menschliche bzw. tierische Körper bildet. Dieser ist nicht konstant und von verschiedenen Parametern abhängig. In der Praxis handelt es sich bei den Gefahrenquellen meist um Spannungsquellen. Der elektrische Strom ergibt sich dann aus dem Spannungswert und dem Körperwiderstand. Dennoch wird meist die Höhe der elektrischen Spannung als Kriterium für die Klassifizierung der Gefährlichkeit benutzt, da der Körperwiderstand sich in bestimmten bekannten Bereichen bewegt.

Es gibt aber auch markante Ausnahmen: Ein Defibrillator wird eingesetzt um Leben zu erhalten, dabei beträgt die Spannung bis zu 750 Volt und liegt zwischen 1 und 20 Millisekunden an. Die Stromstärke erreicht bei einem angenommenen durchschnittlichen Körperwiderstand von 50 Ohm bis zu etwa 15 Ampere.

Gleichspannung verursacht im Körper bei langer Einwirkzeit aufgrund von Elektrolyse chemische Veränderungen.

Hochfrequenz ab etwa 100 kHz führt nur noch zu geringer, solche ab etwa 300 kHz führt zu keiner Nervenreizung mehr, da die in jenen herrschende Ionenleitung den schnellen Polaritätswechseln nicht zu folgen vermag. Die von der Spannung abhängigen thermischen Schädigungen können dennoch auftreten und sind bei HF-Chirurgie erwünscht, um Blutungen zu stoppen.

Spannung

In Deutschland darf die maximale Berührungsspannung laut VDE 50 V Wechselspannung oder 120 V Gleichspannung nicht übersteigen. Bei Niederspannung führt Wechselstrom zu ausgeprägteren Schäden als Gleichstrom, bei Hochspannung ist dies umgekehrt. Die Grenze zwischen Hoch- und Niederspannung ist in Deutschland bei 1.000 Volt Wechselspannung oder 1500 V Gleichspannung angesetzt, für den klinischen Alltag wird aus praktischen Gründen jedoch oft ein Grenzwert von 500 Volt herangezogen (womit Elektrounfälle zum Beispiel im U-Bahn-Bereich zu Hochspannungsunfällen werden, da diese sich klinisch von den Unfallfolgen durch Haushaltsstrom unterscheiden.)

Dabei wird allerdings vorausgesetzt, dass die Stromeinwirkung einige 100 ms lang dauert. Bei erheblich kürzen Einwirkungsdauern um 1 ms können auch Spannungsspitzen von 10000 V, wie sie in Elektrozaun-Geräten oder in Zündspulen durch Induktion erzeugt werden, problemlos überstanden werden.

Ein Unfall durch Langzeiteinwirkung von Hochspannung bewirkt demgegenüber hauptsächlich eine thermische Schädigung des Gewebes und äußert sich damit vor allem als Verbrennungskrankheit. Dies ist deswegen der Fall, weil die dabei wirkenden Stromstärken ein Vielfaches derer bei Niederspannungsunfällen betragen und zugleich sehr heiße Lichtbögen auftreten, die unter Umständen den menschlichen Körper überbrücken können. Beispielsweise fließt bei Berührung (Annäherung) an eine Hochspannungsleitung mit 30 kV und einem angenommenen Körperwiderstand von 5 kOhm kurzzeitig ein Strom von etwa 6 A durch den Körper und es tritt eine thermische Leistung von rund 180 kW auf. Durch diese hohe Leistung kommt es zu einer fast schlagartigen Verdampfung von wasserhaltigem Gewebe im Bereich des Stromeintritt- bzw. Stromaustrittpunktes mit der Folge entsprechend massiver Verbrennungen.

Die Einwirkzeiten liegen bei Hochspannungsunfällen im Bereich einiger 10 Millisekunden und damit um mehrere Zehnerpotenzen unter den Einwirkzeiten bei Niederspannungsunfällen, die bis in den Sekundenbereich reichen können. Die kurzen Einwirkzeiten bei Hochspannungsunfällen ergeben sich aus der Tatsache, dass meist kein direkter Leiterkontakt besteht und somit die Gefahr entfällt, sich am elektrischen Leiter krampfhaft festzuhalten. Bei hochspannungsführenden Leitern erfolgt bereits vor der Berührung ein elektrischer Überschlag durch die Luft.

Bei manchen Unfällen mit Hochspannung kommt es ablaufbedingt zu einer Trennung des über den Körper führenden Stromkreises, beispielsweise wenn die betreffende Person durch den elektrischen Schlag niederstürzt. Bei Hochspannungen der Energieversorgungsnetze ab etwa 100 kV ist der Stromfluss bei Annäherung durch die Ausbildung eines Lichtbogens entlang dem Körper so hoch, dass der Kurzschlussschutz (Überstromschutz) anspricht und die Leitung abschaltet. Bei kurzen Einwirkzeiten besteht bei Hochspannungsunfällen für Unfallopfer eine gewisse Wahrscheinlichkeit, zu überleben. Selbst Blitzeinschläge in den Körper wurden vereinzelt überlebt - allerdings mit schwersten Verbrennungen (Blitzkanal).

Einwirkdauer

Stromschläge führen zu Schäden, die von ihrer Dauer abhängen. So führen elektrostatische Entladungen (Spannungen bis über 15 Kilovolt) trotz ihrer hohen Stromstärke von einigen Ampere in der Regel nur zu Schreckreaktionen oder Folgeunfällen, da deren Entladungsdauer nur unterhalb einer Mikrosekunde liegt. Beim Weidezaungerät (Impulse von einigen Kilovolt) nutzt man dies aus, um Tiere fernzuhalten, ohne ihnen Schaden zuzufügen. In beiden Fällen kommt es bereits zu Muskelkontraktionen, die jedoch noch nicht zu dramatischen unkoordinierten Bewegungen führen. Schreckreaktionen können dabei jedoch zu Folgeunfällen führen.

Übersteigt die Einwirkdauer etwa 100 ms, sinkt die Grenzstromstärke zum Herzkammerflimmern (Todesgefahr), die von 20 ms bis dahin knapp 500 mA beträgt, stark ab, bis sie ab etwa 1 s Einwirkdauer etwa 40 mA beträgt. Dementsprechend lösen die zur Vermeidung von Stromschlägen eingesetzten Fehlerstromschutzschalter bei einem Fehlerstrom von 30 mA innerhalb von 100 ms aus. Bei größeren Fehlerströmen ist die Auslösezeit geringer und beträgt minimal etwa 20 ms - ein Wert, der auch beim Berühren eines Netzspannung führenden Leiters durch eine mit der Erde verbundene Person noch Schutz bietet.

Anmerkung

Fehlerstromschutzschalter bieten nur Schutz bei Ableitströmen gegen Erde, nicht jedoch bei beidpoligem Berühren einer Spannungsquelle!

Maßnahmen

Generell ist das Schema der Rettungskette der Ersten Hilfe auch hier zu beachten und bei Hilfeleistungen unbedingt auf Eigenschutz zu achten. Hierbei ist unter anderem wichtig:

  • Zur Rettung des Verletzten zuerst Spannungsfreiheit der Anlage sicherstellen. Anlagen und Geräte müssen mit dem Not-Aus-Taster oder der Sicherung von der Stromversorgung getrennt werden. Das bloße Abschalten des Gerätes oder der Leitung stellt die Spannungsfreiheit nicht sicher.
  • Freiliegende, stromführende Kabel mit Hilfe nichtleitender Gegenstände (Besenstiel aus Holz) vom Verletzten wegziehen.
  • Bei Hochspannung großen Sicherheitsabstand einhalten, da ansonsten die Gefahr einer Lichtbogenbildung besteht.
  • Außenstehende warnen, damit keine stromführenden Teile berührt werden (Absperrungen einrichten).

Bei bewusstlosen Patienten ist nach dem Abschalten der Stromversorgung die Sicherstellung von Atmung und Herz-Kreislauffunktion vorrangig. Gegebenenfalls ist die sofortige Herz-Lungen-Wiederbelebung einzuleiten. Geschultes Rettungspersonal führt bei Kammerflimmern eine Defibrillation durch. Falls verfügbar, kommt ein öffentlich zugänglicher Laiendefibrillator zur Anwendung.

Bei ansprechbaren Patienten sind Brandverletzungen zu kühlen und mit einer keimarmen, nicht flusenden Wundauflage abzudecken. Der Patient sollte auch bei völligem Wohlbefinden bis zum Ausschluss einer Herzschädigung nicht unbeaufsichtigt bleiben. Erforderlich ist hierzu immer ein 12-Kanal-Elektrokardiogramm. Daher erfolgt in der Regel durch den alarmierten Rettungsdienst ein Transport in die Notaufnahme eines Krankenhauses. Falls Veränderungen im Elektrokardiogramm nachweisbar sind, ein Hochspannungsunfall vorlag oder besondere Risikofaktoren bestehen, wird dort eine mehrstündige Beobachtung mit EKG-Monitoring durchgeführt.

Die weiteren Maßnahmen richten sich nach der Schwere der Verbrennungen. Durch die Wärmewirkung des elektrischen Stromes kommt es zum Flüssigkeitsverlust im Körper. Ebenso kann es durch die Verkohlung des betroffenen Gewebes (Nekrose) zur Entstehung von Giftstoffen führen. Die Gefahr einer Sepsis mit Todesfolge droht durch bakterielle Infektion der geschädigten Organe. Um eine Schädigung der Nieren zu mindern, ist es notwendig, den Flüssigkeitsverlust durch intravenöse Volumengabe, zum Beispiel Natriumchlorid-Infusionslösung, auszugleichen.