Kleinhirn

Sagittalschnitt des Gehirns, Rindenabschnitte des Kleinhirns nummeriert.

Das Cerebellum - Lateinisch, auf Deutsch Kleinhirn, ist ein Teil des Gehirns, der sich dem Hirnstamm hinten auflagert und sich unterhalb der Okzipitallappen des Großhirns in der hinteren Schädelgrube befindet. Zusammen mit dem verlängerten Rückenmark (Myelencephalon) und der Brücke (Pons) bildet es das Rautenhirn (Rhombencephalon). Brücke und Kleinhirn werden als Hinterhirn (Metencephalon) zusammengefasst.

Es ist beim Menschen der nach dem Großhirn vom Volumen her zweitgrößte Teil des Gehirns, besitzt aber eine höhere Zelldichte. Ungefähr 50 % aller zentralnervösen Neurone liegen im Kleinhirn. Das Kleinhirn hat ungefähr 10 % des Großhirngewichts. Aufgrund der feinen blattförmigen Windungen (Folia cerebelli) entspricht seine Oberfläche jedoch ca. 50–75 % der des Großhirns.

Gut untersucht und allgemein anerkannt ist die Rolle des Kleinhirns für Planung, Koordination und Feinabstimmung von Bewegungen, wobei die unterschiedlichen Abschnitte auch verschiedene Funktionen übernehmen. Auch bei Lernvorgängen wird dem Kleinhirn eine wichtige Rolle zugeschrieben. Zudem werden seit einiger Zeit Thesen über die Rolle des Kleinhirns bei kognitiven Prozessen diskutiert.
Der Begriff kognitiv stammt aus der Psychologie und bezeichnet solche Funktionen des Menschen, die mit Wahrnehmung, Lernen, Erinnern und Denken, also der menschlichen Erkenntnis- und Informationsverarbeitung in Zusammenhang stehen.

Lage

Das Kleinhirn liegt in der hinteren Schädelgrube. Es ist dem Hirnstamm (Mittelhirn, Brücke und verlängertes Mark) rückenseitig (dorsal) aufgelagert und mit diesem über drei Kleinhirnstiele (Pedunculus cerebellaris inferior, medius und superior) auf jeder Seite verbunden, durch welche die Faserverbindungen verlaufen. Nach oben und unten spannen sich zum Hirnstamm zwei dünne Strukturen aus weißer Substanz aus, das obere und untere Marksegel (Velum medullare superius und inferius, bei Tieren craniale und caudale).

Zwischen Kleinhirn und Hirnstamm, also bauchseitig (ventral), begrenzt von Medulla oblongata und Pons, seitlich von den Kleinhirnstielen, dorsal von den Marksegeln und dem Kleinhirn, liegt einer der mit Liquor gefüllten Hohlräume des Gehirns, der vierte Ventrikel, dessen Boden als Rautengrube (Fossa rhomboidea) bezeichnet wird.

Das Kleinhirn wird nach oben (bei Tieren nach vorn) vom Kleinhirnzelt (Tentorium cerebelli), einer Duplikatur der Dura mater vom Großhirn getrennt, dessen Okzipitallappen direkt darüber (bei Tieren davor) liegt. Das Kleinhirn liegt in der hinteren Schädelgrube, wo es mit einem als Kleinhirntonsillen bezeichneten Fortsatz nach ventral bis kurz vor das Foramen magnum reicht.

Der Bereich zwischen Kleinhirn und dem Unterrand des ventral davor liegenden Pons (Kleinhirnbrückenwinkel) treten nach schräg ventral die beiden Hirnnerven Nervus facialis und Nervus vestibulocochlearis aus. Hier können von der Hülle des Nervus vestibulocochlearis ausgehend Kleinhirnbrückenwinkeltumore (Akustikusneurinome) entstehen.

Schematische Darstellung des anatomischen Aufbaus des Kleinhirns. Aufsicht auf eine „ausgestreckte“ Kleinhirnrinde.

Aufbau

Beim Kleinhirn bezeichnet man wie beim Großhirn die nach außen gewandte, nervenzellhaltige Schicht als Rinde (Cortex), die im inneren liegende weiße Substanz (nur Faserverbindungen, keine Zellleiber) als Mark (Medulla). Im Mark zu findende Ansammlungen von Nervenzellen sind Kerne.

Makroskopisch gliedert sich das Kleinhirn in zwei Teile:

  • der Wurm (Vermis) ist eine der in der Mitte liegende, etwa ein bis zwei Zentimeter breite, sagittal einmal ganz herumlaufende Struktur,
  • die zwei Hemisphären wölben sich beiderseits des Wurms vor. Sie sind in jeder Richtung größer und breiter als der Wurm.

Zusätzlich findet sich vorne unten, an der dem Hirnstamm zugewandten Seite, vom Wurm ausgehend, zu jeder Seite ein armähnlicher Ausläufer, der wie mit zwei Tatzen endet. Das ist der Flocculus, der zusammen mit dem angrenzenden Wurmteil, dem Nodulus, zum sowohl funktionell als auch entwicklungsgeschichtlich deutlich abgrenzbaren Lobus flocculonodularis zusammengefasst wird.

Deutlich sichtbar ist die Kleinhirnrinde in regelmäßigem Abstand von fast parallel laufenden Furchen durchzogen. Sie dienen wie die Windungen (Gyri) des Großhirns der Oberflächenvergrößerung, verlaufen aber immer transversal (von links nach rechts) und verleihen dem Kleinhirn sein charakteristisches Aussehen. Im Querschnitt ähnelt diese aufgefaltete Anordnung einem Baum (Arbor vitae, Lebensbaum), entsprechend bezeichnet man einen zwischen zwei Furchen vorgewölbten Rindenabschnitt als Folium (lat. Blatt).

Sowohl den Wurm als auch die Hemisphären kann man, einmal herumlaufend, in zahlreiche Abschnitte unterteilen, die aber wenig funktionelle Aussage haben. Lediglich die transversale Einteilung in einen oberen Lobus anterior und einen größeren, unteren Lobus posterior wird häufiger verwendet.

Im Mark des Kleinhirn unterscheidet man auf jeder Seite vier Kerne, von innen nach außen:

  • Nucleus fastigii
  • Nucleus globosus (oft zweigeteilt)
  • Nucleus emboliformis
  • Nucleus dentatus

Die Nuclei dentati sind sehr viel größer als die anderen Kerne und auch stammesgeschichtlich am jüngsten. Nucleus globosus und emboliformis werden zusammen auch als Nucleus interpositus bezeichnet.

Funktion

Gut untersucht und allgemein anerkannt ist die Rolle des Kleinhirns für Planung, Koordination und Feinabstimmung von Bewegungen, wobei die unterschiedlichen Abschnitte auch verschiedene Funktionen übernehmen. Auch bei Lernvorgängen wird dem Kleinhirn eine wichtige Rolle zugeschrieben. Zudem werden seit einiger Zeit Thesen über die Rolle des Kleinhirns bei kognitiven Prozessen diskutiert.

Motorik

Vestibulocerebellum

Dieser Kleinhirnteil erhält aus dem Gleichgewichtsorgan Information über Körperlage und -bewegung. Diese nutzt er zum einen zur Steuerung der Halte- und Stützmotorik. Zum anderen ist er verantwortlich für die Feinabstimmung fast aller Augenbewegungen, die von den verschiedenen okulomotorischen Zentren im Hirnstamm generiert werden.

Spinocerebellum

Das Spinocerebellum empfängt die Afferenzen aus dem Rückenmark, die Informationen über die Stellung von Gelenken und Muskeln geben. Außerdem erhält es kontinuierliche Rückmeldung über die zum Rückenmark und damit in die Peripherie gesendeten Bewegungssignale. Es gliedert sich nach den Efferenzen in zwei funktionell unterschiedliche Zonen. Der Vermis selbst, der in den Nucleus fastigii projiziert, ist vor allem für Stand-, Gang- und Stützmotorik verantwortlich. Die angrenzenden Hemisphärenanteile (intermediäre Zone, Projektion in Nucleus globosus und Nucleus emboliformis) sind entscheidend beteiligt an der Zielmotorik und der Bewegungsdurchführung. Diese Anteile sorgen dafür, dass eine Bewegung wie geplant abläuft, ihr Ziel exakt trifft, und sie sorgen für einen Abgleich von Efferenzen und Afferenzen, also dafür, dass die gesendeten Kommandos der tatsächlichen augenblicklichen Lage der Extremitäten entsprechen und ständig fein an die neue Lage angepasst werden. Hierunter fällt auch die für das Sprechen notwendige außerordentlich feine Abstimmung der beteiligten mimischen und Kehlkopfmuskulatur.

Pontocerebellum

Das Pontocerebellum (auch Cerebrocerebellum) ist funktionell mit dem Großhirnkortex verbunden. Es empfängt Signale aus vielen Bereichen, vor allem den prämotorischen Zentren im Frontallappen (prämotorischer Cortex und supplementärmotorischer Cortex). Dort entstehen Bewegungsentwürfe, die Planung einer Bewegung. Diese eher groben Entwürfe werden zu den lateralen Kleinhirnhemisphären gesendet, wo sie weiter entwickelt, fein abgestimmt, moduliert, korrigiert, mit aus Vorerfahrungen gewonnenen internen Modellen abgeglichen werden, und die geplante Aktivität der beteiligten Muskeln koordiniert wird. Hierbei hilft auch der Rückkopplungskreis über den Nucleus ruber und die Olive zurück zum Kleinhirn. Die Ergebnisse dieser Berechnungen gehen zum Thalamus, wo sie (mit den Ergebnissen des anderen großen subkortikalen motorischen Zentrums, der Basalganglien) integriert und zum motorischen Cortex weitergeleitet werden.

Lernvorgänge

Das Kleinhirn spielt eine Schlüsselrolle beim impliziten Lernen und damit für das prozedurale Gedächtnis. Das bedeutet, dass gut trainierte, automatisierte Bewegungsabläufe (für die also kein Nachdenken mehr erforderlich ist) im Kleinhirn gespeichert werden. Beispiele dafür sind die Koordination der Gesichtsmuskulatur beim Sprechen und die Bewegung der Finger beim Klavierspielen, aber auch die Koordination aller Teile des Körpers wie beim Skifahren oder Tanzen.

Das Kleinhirn ist ein Ort assoziativen Lernens. Das am besten untersuchte Beispiel dafür ist die Konditionierung des Lidschlussreflexes.

Kognitive Prozesse

Seit den achtziger Jahren wird vermehrt diskutiert, dass das Kleinhirn auch an zahlreichen kognitiven Prozessen beteiligt ist. Es werden unter anderem folgende Argumente aufgeführt:

  • Die Hemisphären des Kleinhirns sind beim Menschen so ausgeprägt wie bei keiner anderen Spezies. Evolutionsgeschichtlich geht das Wachstum des Großhirns, in dem die außerordentlichen kognitiven Fähigkeiten des Menschen angesiedelt werden, direkt einher mit dem Wachstum der Hemisphären und des Nucleus dentatus.
  • Das Kleinhirn empfängt über die pontinen Fasern eine gewaltige Menge an Informationen. Diese Stränge umfassen 200 Millionen Nervenfasern, während der Nervus opticus zum Beispiel, der die Informationen aus der Netzhaut des Auges bringt und damit gute Teile des Großhirns beschäftigt, nur etwa 1 Million Nervenfasern umfasst.
  • Man konnte zeigen, dass die Efferenzen des Kleinhirn nicht etwa nur zu motorischen Cortexarealen gelangen, sondern auch zu vielen anderen Bereichen des Cortex.
  • Es gibt Kleinhirnläsionen im Bereich des Lobus posterior, die zu keinerlei klinischen Auffälligkeiten bei der Bewegungskoordination führen.
  • Funktionelle Untersuchungen mit modernen bildgebenden Verfahren konnten eine Aktivierung des Kleinhirns bei kognitiven Aufgaben zeigen.


Nach einer Theorie ist nur der Lobus anterior wirklich für Bewegungskoordination zuständig, während dem unteren Vermis Einfluss auf Affekt und Verhalten zugeschrieben werden. Die linke Hemisphäre (verbunden mit der rechten Großhirnhemisphäre) spielt eine Rolle im visuell-räumlichen Denken, die rechte Hemisphäre (verbunden mit der linken, sprachdominanten Hemisphäre) ist wichtig für Sprachfunktionen. Dazu passt, dass Dyslexie häufig mit einer Beeinträchtigung der Aktivität in der rechten Kleinhirnhemisphäre korreliert. Im Gegensatz zum Sprechen, was die Koordination der Sprechmuskulatur verlangt, handelt es sich hier um höhere Funktionen zur Sprachbildung wie zum Beispiel Wortfindung. Beiden Hemisphären wird zudem allgemein eine Rolle bei Exekutivfunktionen zugeschrieben.

Dennoch ist noch nicht klar, wie wichtig der Einfluss des Kleinhirns tatsächlich ist. An einigen Beispielen wird das Problem deutlich: Bei Untersuchungen mit bildgebenden Verfahren ist es nicht möglich, Kleinhirntätigkeit zur Bewegungskoordination völlig auszuschließen. Gerade beim Sprechen wird das Kleinhirn tätig, so dass Aussagen über Sprachfunktionen schwierig sind. Auch gab es widersprüchliche Experimente. Bei Patienten mit Kleinhirnläsionen lassen sich zwar kognitive Veränderungen nachweisen. Diese sind aber nie wirklich schwerwiegend und es bleibt die Frage, ob nicht doch die motorischen Defizite der eigentliche Grund sind. Bei wirklich schwerwiegenden Kleinhirnläsionen ist eine kognitive Prüfung aufgrund der schweren motorischen Defizite wiederum fast nicht möglich.

Quelle : Wikipedia